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Abstract

This paper introduces the sub-3sec problem in speaker verifi-
cation, a short-duration task rarely explored. The issue arises
from labor-intensive annotations and costly recordings for text-
dependent speaker verification (TD-SV) corpora. To address
this issue, we propose an automatic pipeline to extract short
phrases from text-independent speaker verification (TI-SV) cor-
pora. An ASR model identifies phrases and timestamps, with
N-gram analysis ensuring phrases are common across speak-
ers, enabling sufficient trials. Using this pipeline, we created
Sub3Vox, a TD-SV corpus from VoxCelebl, containing 1.6 mil-
lion short utterances from 1,250 speakers—far larger than ex-
isting TD-SV corpora. Results show that matching enrollment
and test phrases in TD-SV reduces EER by up to 45.23%. Ad-
ditionally, shortening test utterances causes significant TI-SV
performance drops but only minor reduction for TD-SV, offer-
ing the first analysis of phrase length effects on sub-3-second
performance.

Index Terms: Text-dependent speaker verification, TD-SV cor-
pus, automatic corpus curation, short-phrase speaker verifica-
tion, n-gram frequency analysis

1. Introduction

Automatic speaker verification (ASV) is an identity authentica-
tion process that confirms whether a given utterance was spoken
by a claimed identity [1]. It has been widely used in various
real-world scenarios, including access controls, personalized
services, and national security. There are two broad categories
of ASV tasks [2]: text-independent speaker verification (TI-SV)
and text-dependent speaker verification (TD-SV). A TI-SV sys-
tem only needs to determine whether the test segment is spoken
by a target speaker. The lexical contents are not taken into ac-
count in the verification process. Whereas, the content of a test
utterance must match the predefined passphrase, and typically,
similar to the enrollment utterance in TD-SV tasks. As such,
the lexicon is restricted to a small set of predefined words or
phrases in many implementations [3].

Although TI-SV is broadly studied and implemented due
to its flexibility, the phonetic mismatch between enrollment and
test utterances limits the performance of TI-SV systems, espe-
cially when the utterance duration is short [4]. Consequently,
they are less suitable for access-control scenarios, such as digi-
tal banking, military identity verification, etc. TD-SV requires
that the test utterances conform to a specific lexical content, for
which test utterances of mismatched passphrases are rejected.
Therefore, the context-dependent comparisons lead to higher
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accuracy, especially under the condition of short duration [S5,6].
In recent work [7], it was reported that text-dependent verifica-
tion is more reliable when facing deepfakes. These advantages
make TD-SV currently the most commercially viable and pop-
ular in voice-based access control applications [8].

Similar to TI-SV, the recent advances in deep learning have
inspired the research community to apply neural embedding to
TD-SV. For example, the system in [9] uses ResNet-BAM as the
embedding extractor and domain adversarial training to mini-
mize the disparity between TD and TI data. The system re-
ported in [10] employs a probabilistic linear discriminant anal-
ysis (PLDA) backend and a DenseNet front end. The method
proposed in [11] learns speaker and phoneme classification si-
multaneously to detect impostors by identifying lexical incon-
sistencies. Meta-learning [12] [13], an efficient adaptation tech-
nique in low-resource scenarios, has also been used for TD-SV.
For example, the three-stage pipeline in [3] enhances TD-SV
performance using a tiny target-phrase dataset.

There is a lack of large corpora for TD-SV tasks. Look-
ing back at TD corpora from the past, many of them are lim-
ited in terms of the distribution of speakers and usage scenar-
ios [14-16] like smart living. Among them, the well-known
RSR2015 [17] was recorded manually with portable devices.
It involves 197,100 utterances by 300 speakers, including 157
male and 143 female speakers. Ethnic distribution of speak-
ers mirrors Singapore’s population, limiting demographic di-
versity. The English recordings of DeepMine [18] contains
only digits and five other phrases. A crucial problem of these
corpora is that they are significantly smaller than the recent
TI-SV corpora, such as VoxCeleb (1,251 speakers) [19], Vox-
Celeb2 (6,112 speakers) [20], VoxBlink (38,000 speakers) [21],
etc., because manual collection of large TD-SV corpora is time-
consuming and laborious.

With the aim of overcoming the size limitation of exist-
ing TD-SV corpora, we propose an automatic pipeline to curate
TD-SV corpora from TI-SV corpora. This approach addresses
the challenges posed by the insufficient scale of current TD-
SV corpora while reducing the need for labor-intensive manual
recording. This paper introduces the Sub3Vox, a novel English
corpus for TD-SV. It was generated from a TI-SV dataset by
a novel automated pipeline and is larger than any existing TD-
SV corpora. Notably, this is the first time that a TD-SV corpus
has been created from a TI-SV corpus. We further analyze the
characteristics of Sub3Vox and report its baseline performance.
The proposed pipeline can be applied to other TI-SV datasets,
offering a scalable solution for generating large TD-SV corpora.
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Figure 1: Flowchart of the proposed automatic pipeline for creating a TD-SV corpus from TI-SV corpora.

2. The Sub3-Second Problem in ASV
2.1. Problem Formulation

Research has shown that the speaking rate of different lan-
guages is almost the same [22]. In particular, humans speak ap-
proximately 10 phonemes per second, with an average speaking
rate ranging from 3.3 to 5.9 syllables per second, depending on
their emotion and other cognitive conditions [23]. As a conse-
quence, a three-second utterance contains 9.9 to 17.7 syllables
on average. Taking English as an example, the typical speaking
rate in English is four syllables per second [24]. In this regard,
we define the sub3-second problem in ASV as follows:

Sub3-second problem in ASV: An ASV task
with test duration of three seconds or less, with-
out any limitation on the duration and content of
the enrollment utterances. That is, the enrollment
could be utterances with one or multiple utter-
ances of the same passphrase or text-independent
enrollment of long duration.

In the case of English, the Sub3-second problem requires
an ASV system to make a decision based on about twelve or
less English syllables.

2.2. Challenges in Sub3-second Verification

In the past, at least one minute of speech is required for an ASV
system to achieve good performance [25]. Recent advancement
in neural speaker embedding [26] has reduced the test dura-
tion to less than 10 seconds. For example, text-independent
SV trained on Voxceleb2 [20] and tested on Voxelebl [19] can
reach an EER below 1%. Today’s state-of the-art ASV systems
are expected to be effective when the test segments are of 3 to
10 seconds. However, test durations below 3 seconds are sel-
dom explored in ASV. The lack of lexical coverage in short test
utterances results in phonetic mismatch between the test and en-
rollment utterances, causing the ASV performance to degrade
tremendously. On the VoxCelebl test set, the error rate can be
increased by 368.67% when the test duration is reduced from
full duration to less than 3 seconds [27].

2.3. The Importance of Sub3-second Verification

Under short-utterance scenarios, TD-SV systems generally out-
perform TI-SV systems, because the linguistic constraint and

short utterance duration reduce the chance of phonetic mis-
match [4]. Consequently, we advocate the adoption of TD-SV
systems to address the sub3-sec problem.

The sub-3sec problem also motivates a new way to gather
resources for TD-SV. Typically, speech corpora are collected
by requiring speakers to record live through some recording de-
vices or remotely through a telephone or mobile network [28].
Over the years, many corpora, such as TIMIT [29], RSR2015
[30], and Mixer [31], were collected in this manner and con-
tributed significantly to advancing speaker recognition tech-
nologies. However, the laborious procedures have limited the
size of these corpora. To address the sub-3sec challenges dis-
cussed in Section 2.1, it is necessary to derive a large text-
dependent corpus from text-independent corpora using auto-
mated pipelines. In fact, it is fairly straightforward to extract a
large number of short phrases, each with less than three seconds,
that are commonly used in daily life from large TI corpora. By
leveraging this method, we can effectively expand the resource
base for developing TD-SV systems, thereby enhancing their
performance in sub3-second scenarios.

3. Method
3.1. Deriving Large TD Corpora from TI Corpora

To overcome the size limitation of existing TD-SV corpora, we
must expand speaker diversity, recording quantity, and usage
scenarios. In particular, we require a substantial increase in the
number of speakers and more diverse recordings. Such require-
ments can be fulfilled by leveraging the resources in large TI
corpora.

The flowchart of our proposed automatic pipeline is shown
in Figure 1. It contains four steps, which will be explained fur-
ther in the following subsections.

3.2. Speech-to-Text

Text-dependent corpora put more emphasis on lexical content
than text-independent ones. Extracting the text from utter-
ances is the first step of the pipeline if the TI corpora do not
have word-level transcriptions, e.g., VoxCeleb. Various self-
supervised learning (SSL) front-ends can be used for this task,
including wav2vec 2.0 [32], WavLM [33], HuBERT [34], and
Whisper [35]. We used Whisper from OpenAl to perform
speech-to-text and to obtain the timestamps of every word.



However, the Whisper model has auditory hallucination prob-
lems, which is a common issue in large speech models. Com-
mon hallucinations include transcribing the same sentence over
and over again, repeating inexplicable content in non-speech re-
gions, etc. To address this issue, voice activity detection (VAD)
was used to distinguish between speech and non-speech seg-
ments in a conversation. By separating speech and non-speech
segments in advance, auditory hallucinations in the Whisper
model can be reduced.

3.3. N-gram Frequency Analysis

We must select as many common phrases as possible from the
TI corpus to diversify the use cases of the curated TD corpus.
In a TI corpus, different speakers often utter different sentences.
However, in a TD system, the text of a test utterance must match
the registered text of the target speaker. Therefore, it is crucial
to have enough phrases spoken by the same and different speak-
ers to form various test trials in a TD corpus. To this end, every
phrase must be spoken by a speaker at least twice. We searched
for the commonly used phrases, sorting the top 500 phrases for
each N-word phrase, where N = 1,2, ..., 9.!

3.4. Trimming

To obtain the recordings of the selected phrases, we trimmed
the corresponding segment according to the timestamps of each
phrase to form the test utterances. We made the directory struc-
ture of the proposed Sub3Vox as consistent with VoxCelebl as
possible.

3.5. Data Washing

To reduce the detrimental effect of ASR errors on the curated
dataset, we added data filtering at the end of the automated
pipeline to check if the trimmed utterances correspond to the
N-word phrases transcripted by the ASR model (see Figure 1).
This double check procedure can further uncover some prob-
lematic and unusual cases caused by auditory hallucinations.
As mentioned earlier, if the phrases were wrongly transcribed
due to hallucinations, they will be different from the recognized
phrases of the trimmed segments, which will be deleted by the
filtering module.

4. Corpus Description

As shown in Table 1, Sub3Vox contains 1,250 speakers: 1,210
in “evall” and 40 in “eval2”, with 560 female and 690 male
speakers. Compared to the original VoxCeleb, there is a slight
decrease in the number of speakers because Sub3Vox includes
only English utterances. We divided Sub3Vox into “evall”, and
“eval2”, where the utterances in Sub3Vox-evall were obtained
from VoxCeleb1-dev and the utterances in Sub3Vox-eval2 were
obtained from VoxCeleb1-test. Table 1 shows the total duration,
number of unique phrases, and number of utterances in each
part of the corpus. Figure 2 illustrates that most utterances in
Sub3Vox are less than two seconds.

The demographic distribution in Sub3Vox is similar to that
of VoxCelebl, with most speakers from the USA and UK.
Those native English speakers speak faster, making the trimmed
segments shorter compared to the manual recordings, where
speakers utter pre-defined phrases or sentences.

For each N from 1 to 9, we sorted the commonly used
N-word phrases in the whole VoxCelebl. Apparently, the fre-

! An N-word phrase contains a set of N words.

Table 1: The total duration and the numbers of speakers, unique
phrases, and unique utterances in each subset of Sub3Vox.

Male Female
Evall Eval2 Evall Eval2
# of speakers 665 25 545 15
# of hours 74.48 0.51 55.29 0.33

# of unique phrases 2,302 790 2,266 622
# of unique utterances 950,680 3,457 671,798 2,108

s 1-word phrases

2-word phrases
mems 3-word phrases
s 4-word phrases
e 5-word phrases
mm 6-word phrases

7-word phrases
s 8-word phrases
9-word phrases

0.0 0.5 1.0 15 2.0 25
Duration(s)

Figure 2: Duration distributions of the phrases in Sub3Vox.

quency of occurrences of these N-word phrases decreases with
N. Because none of the speakers in VoxCeleb1 spoke the same
9-word phrases twice, the maximum number of words in a
phrase in Sub3Vox is 8. In the future, we will increase this
number using a larger TI corpus, such as VoxBlink.

5. Evaluation Results
5.1. Protocols of TI-SV and TD-SV

In TD-SV, both the speaker and the spoken content are con-
sidered. As shown in Table 2, TD-SV has four trial types:
target-correct (TC), imposter-correct (IC), target-wrong (TW),
and imposter-wrong (IW). The system accepted a test speaker
only when he/she spoke the correct phrase (TC) during verifi-
cation.

Table 2: Four types of trials in TD-SV

Correct Passphrase  Wrong Passphrase
Target-Correct Target-Wrong
Imposter-Correct Imposter-Wrong

Target User
Imposter

5.2. Performance Metrics

The equal error rate (EER) and minimum detection cost func-
tion (minDCF) were used to measure the performance of the
model. The parameter setting of minDCF follows [17], where
Cariss = 10 is the cost of missing a target speaker, Cra = 11is
the cost of false acceptance, Prarget = 0.01 is the prior prob-
ability of target speakers, which means that the probability of
the correct target speaker appearing in practical applications is
0.01. Lower equal error rate (EER) and minimum decision cost
function (minDCF) indicate better performance.

5.3. Performance

In speaker verification on VoxCeleb, models are typically
trained on VoxCeleb2 and tested on VoxCelebl. Specifi-
cally, VoxCeleb2’s dev and test sets are used for training,
while VoxCeleb’s dev and test sets are used for testing. We
used pre-trained models from VoxCeleb2 in WeSpeaker [36]



(ECAPA1024_LM and ResNet221_LM) to test the performance
on the curated Sub3Vox. The supported scoring back-end is co-
sine similarity with score normalization [37].

We tested text-dependent and text-independent speaker ver-
ification to compare metrics under the same and different pho-
netic contexts, respectively. For enrollment, we used three
different utterances of the same pass-phrase from the same
speaker, with one segment as the test utterance.

5.3.1. Overall Performance

The number of trials are shown in Table 3. Results shown in
Table 4 exclude 1-word phrases (such as “and”, “the”, etc.) be-
cause they are rarely used in speaker verification systems. Since
Sub3Vox was derived from VoxCelebl and the models were
pre-trained on VoxCeleb2, Sub3Vox can simulate real-life sce-
narios with unseen speakers and passwords. Testing on future
Sub3Vox versions derived from VoxCeleb2 should yield better
performance.

Compared with text-independent speaker verification, the
performance improvement of the text-dependent method is over
30%, which is consistent across gender and evaluation subsets.
The highlighted example in Table 4 reaches a performance im-
provement up to 45.23%, which was achieved by ResNet221-
LM in the female speakers. Among the male speakers, there is
also a performance improvement up to 41.54%. These results
demonstrate that TD-SV has a significant advantage over TI-SV,
especially when the test utterances are short.

Figure 3 shows the impact of the number of words in a
phrase on the performance under TI-SV and TD-SV settings.
The average utterance durations in Sub3Vox are 564ms for
males and 587ms for females. At these mean durations, the
expected numbers of words are 2.4 for both gender. Because
the enrollment and test utterances have an integral number of
words, we report the performance of TI-SV and TD-SV under
1-8 words, 2—8 words, and 3-8 words in Figure 3. This arrange-
ment means that the evaluations on 2—-8 words will exclude all
1-word phrases. Similarly, the evaluations on 3-8 words will
exclude all 1-word and 2-word phrases. The results show that
the TI-SV suffers from a more severe performance drop (in-
crease in EER) when the evaluations include 1-word and 2-word
phrases. The performance drop in TI-SV is even more severe
when the evaluations include 1-word phrases, especially for the
ResNet-211. The trend clearly suggests that TD-SV is a better
choice for short-utterance scenarios.

Table 3: The numbers of trials in the four trial types in Sub3Vox.
TC: Target-correct; TW: Target-wrong; IC: Imposter-correct;
IW: Imposter-wrong.

Trial Type Male Female
Evall Eval2 Evall Eval2
TC 1,781,018 2,263 352,009 1,491
™ 4,096,332 3,081,496 1,508,569 2,090,158
IC 8,248,687 1,262,561 7,352,431 355,357
w 67,264,238 40,487,487 21,031,044 17,300,245

5.3.2. Performance on Fixed Number of Words

We also conducted experiments in which all trials used utter-
ances with a fixed number of words, e.g., 1-word phrases, 2-
word phrases, and 3-word phrases. The results are shown in
Figure 4. Evidently, the EER decreases when the number of

Table 4: EER and minDCF achieved by ECAPA-TDNN and
ResNet-221 on Sub3Vox.

Model  Gender Verf. Sub3Vox-evall Sub3Vox-eval2
Mode | EER(%) minDCF | EER(%) minDCF
Male TI 16.90 0.66 19.05 0.74
ECAPA TD 12.25 0.52 15.07 0.62
-TDNN Female TI 18.56 0.73 19.42 0.79
TD 14.02 0.64 14.22 0.59
Male TI 13.00 0.58 15.05 0.57
ResNet TD 7.60 0.26 9.55 0.40
-221 Female TI 14.75 0.60 14.90 0.61
TD 10.62 0.46 8.16 0.37
ECAPA-TDNN ResNet-221
22.00% 18.00%
T T
—o— TD —4— TD

20.00% 16.00%
18.00% 2 14.00%

16.00% 7 12.00% 4
% 1
14.00% 10.00% | —

1-8 words 2-8 words 3-8 words 1-8 words 2-8 words 3-8 words
N-word phrases N-word phrases

EER (%)
EER (%)

Figure 3: The impact of phrase durations on the performance
of TI-SV and TD-SV systems. In the horizontal axis, from left
to right, the short phrases (1-word and 2-word phrases) are
progressively excluded, leading to longer durations for the test
phrases.

words in the phrases increases. Again, the performance of TD-
SV is always better than that of TI-SV.

30.00% 4 Male-TI
mmm Male-TD
25.00% A Female-TI
Female-TD
%
9\? 20.00%
% 15.00%
w
10.00%
5.00% -
0.00% - ] ] ]
1-word 2-word 3-word

Figure 4: The EER performance of ECAPA1024_LM on
Sub3Vox-eval2 for different numbers of words in the test utter-
ances (phrases).

6. Conclusions and Future Works

We focus on the short-duration problems on speaker verifica-
tion, and defined a new concept — the sub-3sec problem. An
automatic pipeline was proposed to curate TD-SV corpora from
TI-SV corpora. With this pipeline, we introduced a new dataset
— Sub3Vox, derived from VoxCelebl, and reported baselines on
it. We found that the EER of a text-independent speaker verifi-
cation system can be reduced by up to 45.23% when it was mod-
ified to a text-dependent one, where lexical content can play an
important role in the verification process. Moreover, we show
that with test utterances under 3 seconds, the EER of a TD-SV
system can be reduced by up to 53.56% when the number of
words per utterance was increased by one.

Future research will focus on leveraging the proposed
pipeline to create more extensive TD-SV corpora from larger



TI-SV datasets, such as VoxBlink and SRE. This effort aims
to further advance the development of short-duration text-
dependent speaker verification systems.
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